Question

Let $$f\left( x \right) = \frac{{{e^x} + 1}}{{{e^x} - 1}}$$    and $$\int_0^1 {\frac{{{e^x} + 1}}{{{e^x} - 1}}.x\,dx} = \lambda .$$     Then $$\int_{ - 1}^1 {tf\left( t \right)dt} $$    is equal to :

A. 0
B. $$2\lambda $$  
C. $$\lambda $$
D. none of these
Answer :   $$2\lambda $$
Solution :
$$\eqalign{ & \phi \left( t \right) = tf\left( t \right) = t.\frac{{{e^t} + 1}}{{{e^t} - 1}} \cr & {\text{So, }}\phi \left( { - t} \right) = - t.\frac{{{e^{ - t}} + 1}}{{{e^{ - t}} - 1}} = t.\frac{{{e^t} + 1}}{{{e^t} - 1}} \cr & \therefore \phi \left( t \right) = \phi \left( { - t} \right){\text{.}}\,{\text{Hence, }}\phi \left( t \right){\text{ is an even function}} \cr & \therefore \int_{ - 1}^1 {\phi \left( t \right)dt} = 2\int_0^1 {\phi \left( t \right)dt} = 2\lambda \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section