Question

Let $$f\left( x \right) = {\cos ^{ - 1}}\left( {\frac{{{x^2}}}{{1 + {x^2}}}} \right).$$     The range of $$f$$ is :

A. $$\left[ {0,\,\frac{\pi }{2}} \right]$$
B. $$\left[ { - \frac{\pi }{2},\,\frac{\pi }{2}} \right]$$
C. $$\left[ { - \frac{\pi }{2},\,0} \right]$$
D. none of these  
Answer :   none of these
Solution :
$$\left| {\frac{{{x^2}}}{{1 + {x^2}}}} \right| \leqslant 1.$$   This is true for all $$x\, \in \,R.$$   So, the domain $$=R$$
$$\eqalign{ & {\text{Now }}\frac{{{x^2}}}{{1 + {x^2}}} = 1 - \frac{1}{{1 + {x^2}}} \cr & \therefore \,\,0 \leqslant \frac{{{x^2}}}{{1 + {x^2}}} < 1 \cr & \therefore \,\,{\cos ^{ - 1}}0 \geqslant {\cos ^{ - 1}}\frac{{{x^2}}}{{1 + {x^2}}} > {\cos ^{ - 1}}1 \cr & \Rightarrow \frac{\pi }{2} \geqslant {\cos ^{ - 1}}\frac{{{x^2}}}{{1 + {x^2}}} > 0 \cr & \therefore {\text{The range }} = \left( {0,\,\frac{\pi }{2}} \right] \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section