Question

Let \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} n&{n + 1}&{n + 2}\\ {{\,^n}{P_n}}&{^{n + 1}{P_{n + 1}}}&{^{n + 2}{P_{n + 2}}}\\ {{\,^n}{C_n}}&{^{n + 1}{C_{n + 1}}}&{^{n + 2}{C_{n + 2}}} \end{array}} \right|,\]       where the symbols have their usual meanings. The $$f\left( x \right)$$  is divisible by

A. $${{n^2} + n + 1}$$  
B. $$\left( {n + 1} \right)!$$
C. $$\left( {2n + 1} \right)!$$
D. None of the above
Answer :   $${{n^2} + n + 1}$$
Solution :
\[\begin{gathered} \because f\left( x \right) = \left| {\begin{array}{*{20}{c}} n&{n + 1}&{n + 2} \\ {{\,^n}{P_n}}&{^{n + 1}{P_{n + 1}}}&{^{n + 2}{P_{n + 2}}} \\ {{\,^n}{C_n}}&{^{n + 1}{C_{n + 1}}}&{^{n + 2}{C_{n + 2}}} \end{array}} \right| \hfill \\ = \,\left| {\begin{array}{*{20}{c}} n&{n + 1}&{n + 2} \\ {n!}&{\left( {n + 1} \right)!}&{\left( {n + 2} \right)!} \\ 1&1&1 \end{array}} \right|\,\left( {\because {\,^n}{P_n} = n!{,^n}{C_n} = 1} \right) \hfill \\ \end{gathered} \]
Applying, $${C_2} \to {C_2} - {C_1}\,\,{\text{and}}\,\,{C_3} \to {C_3} - {C_1}$$
Then, \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} n&1&2\\ {n!}&{n.n!}&{\left( {{n^2} + 3n + 1} \right)n!}\\ 1&0&0 \end{array}} \right|\]
\[ = \,\left| {\begin{array}{*{20}{c}} 1&2\\ {n.n!}&{\left( {{n^2} + 3n + 1} \right)n!} \end{array}} \right| = n!\left( {{n^2} + n + 1} \right)\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section