Question

Let $$f\left( x \right)$$  be differentiable on the interval $$\left( {0,\,\infty } \right)$$  such that $$f\left( 1 \right) = 1,$$   and $$\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$      for each $$x > 0.$$   Then $$f\left( x \right)$$  is-

A. $$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$  
B. $$\frac{{ - 1}}{{3x}} + \frac{{4{x^2}}}{3}$$
C. $$\frac{{ - 1}}{x} + \frac{2}{{{x^2}}}$$
D. $$\frac{1}{x}$$
Answer :   $$\frac{1}{{3x}} + \frac{{2{x^2}}}{3}$$
Solution :
Given that $$f\left( x \right)$$  is differentiable on $$\left( {0,\,\infty } \right)$$  with
$$f\left( 1 \right) = 1\,{\text{and}}\mathop {\lim }\limits_{t \to x} \frac{{{t^2}f\left( x \right) - {x^2}f\left( t \right)}}{{t - x}} = 1$$         for each $$x>0$$
$$\eqalign{ & \Rightarrow \mathop {\lim }\limits_{t \to x} \frac{{2t\,f\left( x \right) - {x^2}f'\left( t \right)}}{1} = 1\,\,\left[ {{\text{using L'Hospital rule}}} \right] \cr & \Rightarrow 2x\,f\left( x \right) - {x^2}\,f'\left( x \right) = 1 \cr & \Rightarrow f'\left( x \right) - \frac{2}{x}f\left( x \right) = - \frac{1}{{{x^2}}}\left[ {{\text{Linear differential equation}}} \right] \cr} $$
Integrating factor
$$\eqalign{ & {e^{\int { - \,\frac{2}{x}dx} }} = {e^{ - 2\,\log \,x}} = {e^{\log \frac{1}{{{x^2}}}}} = \frac{1}{{{x^2}}} \cr & \therefore \,\,{\text{Solution is}}\,f\left( x \right) \times \frac{1}{{{x^2}}} = \int {\left( { - \frac{1}{{{x^2}}}} \right) \times \frac{1}{{{x^2}}}dx} \cr & \Rightarrow \frac{{f\left( x \right)}}{{{x^2}}} = \frac{1}{{3{x^3}}} + C \cr & \Rightarrow f\left( x \right) = C{x^2} + \frac{1}{{3x}} \cr & {\text{Also }}f\left( 1 \right) = 1 \cr & \Rightarrow 1 = C + \frac{1}{3} \cr & \Rightarrow C = \frac{2}{3} \cr & \therefore f\left( x \right) = \frac{2}{3}{x^2} + \frac{1}{{3x}} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section