Question

Let $$f\left( x \right)$$  be a polynomial function satisfying $$f\left( x \right).f\left( {\frac{1}{x}} \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right).$$       If $$f\left( 4 \right) = 65$$   and $${l_1},\,{l_2},\,{l_3}$$   are in GP, then $$f'\left( {{l_1}} \right),\,f'\left( {{l_2}} \right),\,f'\left( {{l_3}} \right)$$     are in :

A. AP
B. GP  
C. HP
D. none of these
Answer :   GP
Solution :
Since, $$f\left( x \right)$$  is a polynomial function satisfying
$$\eqalign{ & f\left( x \right).f\left( {\frac{1}{x}} \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right), \cr & \therefore \,f\left( x \right) = {x^n} + 1{\text{ or }}f\left( x \right) = - {x^n} + 1 \cr & {\text{If }}f\left( x \right) = - {x^n} + 1,{\text{ then }}f\left( 4 \right) = - {4^n} + 1 \ne 65 \cr & {\text{So, }}f\left( x \right) = {x^n} + 1{\text{ Since, }}f\left( 4 \right) = 65 \cr & \therefore \,{4^n} + 1 = 65\,\, \Rightarrow \,n = 3 \cr & \therefore \,f\left( x \right) = {x^3} + 1\,\, \Rightarrow f'\left( x \right) = 3{x^2} \cr & \therefore \,f'\left( {{l_1}} \right) = 3l_1^2,\,f'\left( {{l_2}} \right) = 3l_2^2,\,f'\left( {{l_3}} \right) = 3l_3^2 \cr & {\text{Since, }}{l_1},\,{l_2},\,{l_3}{\text{ are in GP}}{\text{.}} \cr & \therefore \,f'\left( {{l_1}} \right),\,f'\left( {{l_2}} \right),\,f'\left( {{l_3}} \right){\text{ are also in GP}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section