Let $$f\left( x \right)$$ be a continuous function such that the area bounded by the curve $$y = f\left( x \right),\,x$$ -axis and the lines $$x = 0$$ and $$x = a$$ is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a,$$ then $$f\left( {\frac{\pi }{2}} \right) = ?$$
A.
$$1$$
B.
$$\frac{1}{2}$$
C.
$$\frac{1}{3}$$
D.
None of these
Answer :
$$\frac{1}{2}$$
Solution :
We have, $$\int\limits_0^a {f\left( x \right)dx} = \frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a$$
Differentiating w.r.t. $$a,$$ we get
$$f\left( a \right) = a + \frac{1}{2}\left( {\sin \,a + a\,\cos \,a} \right) - \frac{\pi }{2}\sin \,a$$
Put $$a = \frac{\pi }{2}\,;\,f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2} + \frac{1}{2} - \frac{\pi }{2} = \frac{1}{2}$$
Releted MCQ Question on Calculus >> Application of Integration
Releted Question 1
The area bounded by the curves $$y = f\left( x \right),$$ the $$x$$-axis and the ordinates $$x = 1$$ and $$x = b$$ is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$ Then $$f\left( x \right)$$ is-