Question

Let $$f\left( x \right)$$  be a continuous function such that the area bounded by the curve $$y = f\left( x \right),$$   the $$x$$-axis and the two ordinates $$x=0$$  and $$x=a$$  is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a.$$     Then $$f\left( {\frac{\pi }{2}} \right)$$  is :

A. $$\frac{1}{2}$$  
B. $$\frac{{{\pi ^2}}}{8} + \frac{\pi }{4}$$
C. $$\frac{{\pi + 1}}{2}$$
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & {\text{Here, }}\int_0^a {f\left( x \right)dx} = \frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a.\, \cr & {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}a, \cr & f\left( a \right) = a + \frac{1}{2}\left( {\sin \,a + a\cos \,a} \right) - \frac{\pi }{2}\sin a \cr & {\text{So, }}f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2} + \frac{1}{2}\left( {1 + 0} \right) - \frac{\pi }{2} = \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section