Question

Let $$f\left( x \right) = - 1 + \left| {x - 2} \right|,$$     and $$g\left( x \right) = 1 - \left| x \right|;$$    then the set of all points where $$fog$$  is discontinuous is :

A. $$\left\{ {0,\,2} \right\}$$
B. $$\left\{ {0,\,1,\,2} \right\}$$
C. $$\left\{ 0 \right\}$$
D. an empty set  
Answer :   an empty set
Solution :
\[\begin{array}{l} f\left( {g\left( x \right)} \right) = f\left( {1 - \left| x \right|} \right) = - 1 + \left| {\left| x \right| + 1} \right|\\ {\rm{Let\,\, }}fog = y\\ \therefore \,y = - 1 + \left| {\left| x \right| + 1} \right| \Rightarrow y\left\{ \begin{array}{l} \,\,\,x,\,\,\,\,x \ge 0\\ - x,\,\,\,\,x < 0 \end{array} \right. \end{array}\]
$$\eqalign{ & {\text{L}}{\text{.H}}{\text{.L}}{\text{. at }}\left( {x = 0} \right) = \mathop {\lim }\limits_{x \to 0} \left( { - x} \right) = 0 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{. at }}\left( {x = 0} \right) = \mathop {\lim }\limits_{x \to 0} \left( x \right) = 0 \cr & {\text{When }}x = 0,{\text{ then }}y = 0 \cr & {\text{Hence, L}}{\text{.H}}{\text{.L}}{\text{. at }}\left( {x = 0} \right) = {\text{ R}}{\text{.H}}{\text{.L at }}\left( {x = 0} \right) = {\text{value of }}y{\text{ at }}\left( {x = 0} \right) \cr} $$
Hence, $$y$$ is continuous at $$x = 0$$
Clearly at all other point $$y$$ continuous. Therefore, the set of all points where $$fog$$  is discontinuous is an empty set.

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section