Question

Let $$f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right).$$      Then $$f\left( \theta \right)$$  is

A. $$ \geqslant 0\,\,{\text{only when }}\theta \geqslant {\text{0}}$$
B. $$ \leqslant 0\,{\text{for all real}}\,\theta $$
C. $$ \geqslant 0\,{\text{for all real}}\,\theta $$  
D. $$ \leqslant 0\,\,{\text{only when }}\theta \leqslant {\text{0}}$$
Answer :   $$ \geqslant 0\,{\text{for all real}}\,\theta $$
Solution :
$$\eqalign{ & f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right) \cr & = \left( {\sin \theta + 3\sin \theta - 4{{\sin }^3}\theta } \right).\sin \theta \cr & = \left( {4\sin \theta - 4{{\sin }^3}\theta } \right)\sin \theta = {\sin ^2}\theta \left( {4 - 4{{\sin }^2}\theta } \right) \cr & = 4{\sin ^2}\theta \left( {1 - {{\sin }^2}\theta } \right) \cr & = 4{\sin ^2}\theta {\cos ^2}\theta \cr & = {\left( {2\sin \theta \cos \theta } \right)^2} \cr & = {\left( {\sin 2\theta } \right)^2} \geqslant 0 \cr} $$
which is true for all $$\theta .$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section