Question
Let $$f:R \to R$$ be such that $$f\left( 1 \right) = 3$$ and $$f'\left( 1 \right) = 6.$$ Then $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}}$$ equals-
A.
$$1$$
B.
$${e^{\frac{1}{2}}}$$
C.
$${e^2}$$
D.
$${e^3}$$
Answer :
$${e^2}$$
Solution :
Given that $$f:R \to R$$ such that
$$\eqalign{
& f\left( 1 \right) = 3\,\,{\text{and}}\,\,f'\left( 1 \right) = 6 \cr
& {\text{Then}}\,\,\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}} \cr
& = {e^{\mathop {\lim }\limits_{x \to 0} \,\frac{1}{x}\left[ {\log \,f\left( {1 + x} \right) - \log \,f\left( 1 \right)} \right]}} \cr
& = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{f\left( {1 + x} \right)}}f'\left( {1 + x} \right)}}{1}}}\,\,\,\,\left[ {{\text{Using L'Hospital rule}}} \right] \cr
& = {e^{\frac{{f'\left( 1 \right)}}{{f\left( 1 \right)}}}} \cr
& = {e^{\frac{6}{3}}} \cr
& = {e^2} \cr} $$