Question

Let $$f:R \to R$$    be a function defined by $$f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}.$$     The set of all points where $$f\left( x \right)$$  is NOT differentiable is-

A. $$\left\{ { - 1,\,1} \right\}$$
B. $$\left\{ { - 1,\,0} \right\}$$
C. $$\left\{ {0,\,1} \right\}$$
D. $$\left\{ { - 1,\,0,\,1} \right\}$$  
Answer :   $$\left\{ { - 1,\,0,\,1} \right\}$$
Solution :
\[\begin{array}{l} f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}\\ = \left\{ \begin{array}{l} x\,\,\,\,;\,\,x < - 1\\ {x^3}\,\,;\,\, - 1 \le x \le 0\\ x\,\,\,\,;\,\,0 \le x \le 1\\ {x^3}\,\,;\,\,x \ge 1 \end{array} \right. \end{array}\]
KEY CONCEPT
A continuous function $$f\left( x \right)$$ is not differentiable at $$x= a$$
If graphically it takes a sharp turn at $$x=a.$$
Graph of $$f\left( x \right) = \max \,\left\{ {x,\,{x^3}} \right\}$$     is as shown with solid lines.
Differentiability and Differentiation mcq solution image
From graph of $$f\left( x \right)$$  at $$x =-1, \,0, \,1,$$    we have sharp turns.
$$\therefore f\left( x \right)$$   is not differentiable at $$x =- 1, \,0, \,1.$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section