Question

Let $$f:R \to R$$   and $$g:R \to R$$   be continuous functions. Then the value of the integral $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx$$        is-

A. $$\pi $$
B. $$1$$
C. $$-1$$
D. $$0$$  
Answer :   $$0$$
Solution :
We have,
$$\eqalign{ & I = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx \cr & {\text{Let }}F\left( x \right) = \left( {f\left( x \right) + f\left( { - x} \right)} \right)\left( {g\left( x \right) - g\left( { - x} \right)} \right) \cr & {\text{then }}F\left( { - x} \right) = \left( {f\left( { - x} \right) + f\left( x \right)} \right)\left( {g\left( { - x} \right) - g\left( x \right)} \right) \cr & = - \left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right] \cr & = - F\left( x \right) \cr} $$
$$\therefore F\left( x \right)$$  is an odd function,
$$\therefore $$ We get $$I=0$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section