Question

Let $$f:N \to Y$$   be a function defined as $$f\left( x \right) = 4x + 3$$    where $$Y = \left\{ {y \in N:y = 4x + 3\,{\text{for}}\,{\text{some}}\,x \in N} \right\}.$$
Show that $$f$$ is invertible and its inverse is

A. $$g\left( y \right) = \frac{{3y + 4}}{3}$$
B. $$g\left( y \right) = 4 + \frac{{y + 3}}{4}$$
C. $$g\left( y \right) = \frac{{y + 3}}{4}$$
D. $$g\left( y \right) = \frac{{y - 3}}{4}$$  
Answer :   $$g\left( y \right) = \frac{{y - 3}}{4}$$
Solution :
Clearly $$f$$ is one one and onto, so invertible
$$\eqalign{ & {\text{Also}}\,f\left( x \right) = 4x + 3 = y \Rightarrow x = \frac{{y - 3}}{4} \cr & \therefore g\left( y \right) = \frac{{y - 3}}{4} \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section