Question

Let $$f$$ be a real-valued function defined on the interval (-1, 1) such that $${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} } \,dt,$$      for all $$x \in \left( { - 1,\,1} \right),$$   and let $${f^{ - 1}}$$  be the inverse function of $$f.$$  Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$     is equal to-

A. $$1$$
B. $$\frac{1}{3}$$  
C. $$\frac{1}{2}$$
D. $$\frac{1}{e}$$
Answer :   $$\frac{1}{3}$$
Solution :
$$\eqalign{ & {e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {1 + {t^4}} } \,dt\,\forall \,x \in \left( { - 1,\,1} \right) \cr & {\text{At }}x = 0,\,\,f\left( 0 \right) = 2 \cr} $$
Now on differentiating, we get
$$\eqalign{ & - {e^{ - x}}f\left( x \right) + {e^{ - x}}f'\left( x \right) = 0\sqrt {1 + {x^4}} \cr & \Rightarrow - f\left( 0 \right) + f'\left( 0 \right) = 1 \cr & \Rightarrow f'\left( 0 \right) = 3 \cr & {\text{Now }}{f^{ - 1}}\left( {f\left( x \right)} \right) = x \cr & \Rightarrow \left[ {\left( {{f^{ - 1}}} \right)'\left( {f\left( x \right)} \right)} \right]f'\left( x \right) = 1 \cr & \Rightarrow \left( {{f^{ - 1}}} \right)'\left( {f\left( 0 \right)} \right)f'\left( 0 \right) = 1 \cr & \Rightarrow \left( {{f^{ - 1}}} \right)'\left( 2 \right) = \frac{1}{3} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section