Question

Let $$f$$ be a function on $${\bf{R}}$$ given by $$f\left( x \right) = {x^2}$$   and let
$$E = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 0} \right\}$$      and
$$F = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}$$
then which of the following is false ?

A. $$f\left( E \right) = f\left( F \right)$$
B. $$E \cap F \subset f\left( E \right) \cap f\left( F \right)$$
C. $$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$  
D. $$f\left( {E \cap F} \right) = \left\{ 0 \right\}$$
Answer :   $$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$
Solution :
$$\eqalign{ & {\text{We have }} - 1 \leqslant x \leqslant 0 \Rightarrow 0 \leqslant {x^2} \leqslant 1......({\text{i}}) \cr & {\text{and }}0 \leqslant x \leqslant 1 \Rightarrow 0 \leqslant {x^2} \leqslant 1......({\text{ii}}) \cr & \therefore \,E = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 0} \right\} \cr & \Rightarrow f\left( E \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}{\text{ from (i)}} \cr & {\text{Also, }}F = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\} \cr & \Rightarrow f\left( F \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}{\text{ from (ii)}} \cr & {\text{Hence, }}f\left( E \right) = f\left( F \right) \cr & {\text{Again }}E \cap F = \left\{ 0 \right\} \subset f\left( E \right) \cap f\left( F \right) \cr & \left[ {{\text{Since }}f\left( E \right) = f\left( F \right)\,\therefore \,f\left( E \right) \cap f\left( F \right) = f\left( E \right) = f\left( F \right)} \right]{\text{ }} \cr & {\text{Also }}E \cap F = \left\{ 0 \right\} \Rightarrow f\left( {E \cap F} \right) = \left\{ 0 \right\} \cr & {\text{Next }}E \cup F = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 1} \right\} \cr & {\text{and }}f\left( E \right) \cup f\left( F \right) = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\} \cr & \therefore \,E \cup F \subset f\left( E \right) \cup f\left( F \right) \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section