Question

Let $$f:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right)$$    be a continuous and differentiable function. Then, $$\left( {f\left( 7 \right) - f\left( 2 \right)} \right)\frac{{{{\left( {f\left( 7 \right)} \right)}^2} + {{\left( {f\left( 2 \right)} \right)}^2} + f\left( 2 \right)f\left( 7 \right)}}{3}$$         where $$c\, \in \left[ {2,\,7} \right].$$

A. $$5{f^2}\left( c \right)f'\left( c \right)$$  
B. $$5f'\left( c \right)$$
C. $$f\left( c \right)f'\left( c \right)$$
D. none of these
Answer :   $$5{f^2}\left( c \right)f'\left( c \right)$$
Solution :
$$\eqalign{ & {\text{Let }}g\left( x \right) = {f^3}\left( x \right) \cr & \Rightarrow g'\left( x \right) = 3{f^2}\left( x \right).f'\left( x \right) \cr & \because \,f:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right) \Rightarrow g:\left[ {2,\,7} \right] \to \left[ {0,\,\infty } \right) \cr} $$
Using Lagrange's mean value theorem on $$g\left( x \right),$$   we get $$g'\left( c \right) = \frac{{g\left( 7 \right) - g\left( 2 \right)}}{5},\,c\, \in \left[ {2,\,7} \right]$$
$$ \Rightarrow 2{f^2}\left( c \right)f'\left( c \right) = \left( {f\left( 7 \right) - f\left( 2 \right)} \right)\frac{{{{\left( {f\left( 7 \right)} \right)}^2} + {{\left( {f\left( 2 \right)} \right)}^2} + f\left( 2 \right)f\left( 7 \right)}}{3}$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section