Question

Let $$f:\left[ {\frac{1}{2},\,1} \right] \to R$$     (the set of all real number) be a positive, non-constant and differentiable function such that $$f'\left( x \right) < 2f\left( x \right)$$    and $$f\left( {\frac{1}{2}} \right) = 1.$$    Then the value of $$\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} $$   lies in the interval-

A. $$\left( {2e - 1,\,2e} \right)$$
B. $$\left( {e - 1,\,2e - 1} \right)$$
C. $$\left( {\frac{{e - 1}}{2},\,e - 1} \right)$$
D. $$\left( {0,\,\frac{{e - 1}}{2}} \right)$$  
Answer :   $$\left( {0,\,\frac{{e - 1}}{2}} \right)$$
Solution :
We have,
$$\eqalign{ & f'\left( x \right) - 2f\left( x \right) < 0 \cr & \Rightarrow {e^{ - 2x}}f'\left( x \right) - 2{e^{ - 2x}}f\left( x \right) < 0 \cr & \Rightarrow \frac{d}{{dx}}\left( {{e^{ - 2x}}f\left( x \right)} \right) < 0 \cr & \Rightarrow {e^{ - 2x}}f\left( x \right)\,{\text{is strictly decreasing function on }}\left[ {\frac{1}{2},\,1} \right] \cr & \therefore {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}f\left( {\frac{1}{2}} \right){\text{ or }}f\left( x \right) < {e^{2x - 1}} \cr} $$
Also given that $$f\left( x \right)$$  is positive function so $$f\left( x \right) > 0$$
$$\eqalign{ & \therefore 0 < f\left( x \right) < {e^{2x - 1}} \cr & \Rightarrow 0 < \int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} < \int\limits_{\frac{1}{2}}^1 {{e^{2x - 1}}dx} \cr & \Rightarrow 0 < \int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\frac{{{e^{2x - 1}}}}{2}} \right]_{\frac{1}{2}}^1 \cr & \Rightarrow \int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} \, \in \left( {0,\,\frac{{e - 1}}{2}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section