Question

Let $$f:\left( { - 1,1} \right) \to B,$$     be a function by $$f\left( x \right) = {\tan ^{ - 1}}\frac{{2x}}{{1 - {x^2}}},$$    then $$f$$ is both one-one and onto when $$B$$ is the interval

A. $$\left( {0,\frac{\pi }{2}} \right)$$
B. $$\left[ {0,\left. {\frac{\pi }{2}} \right)} \right.$$
C. $$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D. $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$  
Answer :   $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
Solution :
$$\eqalign{ & {\text{Given }}f\left( x \right) = {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right) = 2{\tan ^{ - 1}}x{\text{ for }}x \in \left( { - 1,1} \right) \cr & {\text{If }}x \in \left( { - 1,1} \right) \Rightarrow {\tan ^{ - 1}}x \in \left( {\frac{{ - \pi }}{4},\frac{\pi }{4}} \right) \cr & \Rightarrow 2{\tan ^{ - 1}}x \in \left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right) \cr} $$
Clearly, range of $$f\left( x \right) = \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
For $$f$$ to be onto, co-domain = range
Co-domain of function $$ = B = \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section