Let $$\frac{{df\left( x \right)}}{{dx}} = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$ If $$\int_1^4 {\frac{{3{e^{\sin \,{x^3}}}}}{x}dx = f\left( k \right) - f\left( 1 \right)} $$ then one of the possible values of $$k$$ is :
If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$ and $$y\left( 0 \right) = - 1,$$ then $$y\left( 1 \right)$$ is equal to-