Question

Let \[\Delta = \left| {\begin{array}{*{20}{c}} {1 + {x_1}{y_1}}&{1 + {x_1}{y_2}}&{1 + {x_1}{y_3}}\\ {1 + {x_2}{y_1}}&{1 + {x_2}{y_2}}&{1 + {x_2}{y_3}}\\ {1 + {x_3}{y_1}}&{1 + {x_3}{y_2}}&{1 + {x_3}{y_3}} \end{array}} \right|,\]        then value of $$\Delta $$ is

A. $${x_1}{x_2}{x_3} + {y_1}{y_2}{y_3}$$
B. $${x_1}{x_2}{x_3}{y_1}{y_2}{y_3}$$
C. $${x_2}{x_3}{y_2}{y_3} + {x_3}{x_1}{y_3}{y_1} + {x_1}{x_2}{y_1}{y_2}$$
D. $$0$$  
Answer :   $$0$$
Solution :
We can write $$\Delta = {\Delta _1} + {y_1}{\Delta _2},{\text{ where}}$$
\[\begin{array}{l} {\Delta _1} = \left| {\begin{array}{*{20}{c}} 1&{1 + {x_1}{y_2}}&{1 + {x_1}{y_3}}\\ 1&{1 + {x_2}{y_2}}&{1 + {x_2}{y_3}}\\ 1&{1 + {x_3}{y_2}}&{1 + {x_3}{y_3}} \end{array}} \right|{\rm{ and}}\\ {\Delta _2} = \left| {\begin{array}{*{20}{c}} {{x_1}}&{1 + {x_1}{y_2}}&{1 + {x_1}{y_3}}\\ {{x_2}}&{1 + {x_2}{y_2}}&{1 + {x_2}{y_3}}\\ {{x_3}}&{1 + {x_3}{y_2}}&{1 + {x_3}{y_3}} \end{array}} \right| \end{array}\]
$$\eqalign{ & {\text{In }}{\Delta _1},{\text{use }}{C_2} \to {C_2} - {C_1}{\text{ and }}{C_3} \to {C_3} - {C_1} \cr & {\text{so that,}} \cr} $$
\[{\Delta _1} = \left| {\begin{array}{*{20}{c}} 1&{{x_1}{y_2}}&{{x_1}{y_3}}\\ 1&{{x_2}{y_2}}&{{x_2}{y_3}}\\ 1&{{x_3}{y_2}}&{{x_3}{y_3}} \end{array}} \right| = 0\]
$$\eqalign{ & \left[ {\because {C_2}{\text{ and }}{C_3}{\text{ are proportional}}} \right] \cr & {\text{In }}{\Delta _2},{\text{us }}{C_2} \to {C_2} - {y_2}{C_1} \cr & {\text{and }}{C_3} \to {C_3} - {y_3}{C_1}{\text{ to get}} \cr} $$
\[{\Delta _2} = \left| {\begin{array}{*{20}{c}} {{x_1}}&1&1 \\ {{x_2}}&1&1 \\ {{x_3}}&1&1 \end{array}} \right| = 0\left[ {\because {C_2}{\text{ and }}{C_3}{\text{ are identical}}} \right]\]
$$\therefore \Delta = 0$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section