Solution :
$$\eqalign{
& {\text{We have, }}\,\tan A = \frac{a}{{2{d_1}}}; \cr
& {d_1} = R\cos A\,{\text{ etc}}{\text{.}} \cr} $$

$$\eqalign{
& {\text{Similarly, }}\,\tan B = \frac{b}{{2{d_2}}} \cr
& {\text{and }}\,\tan C = \frac{C}{{2{d_3}}} \cr
& {\text{In }}\,\Delta \,ABC,\tan A + \tan B + \tan C \cr
& = \tan A \cdot \tan B \cdot \tan C \cr
& \Rightarrow \frac{a}{{2{d_1}}} + \frac{b}{{2{d_2}}} + \frac{c}{{2{d_3}}} = \frac{{abc}}{{8{d_1}{d_2}{d_3}}} \cr
& \therefore 4\left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}} \cr
& \Rightarrow \lambda = 4 \cr} $$