Question

Let $$d_1, d_2$$  and $$d_3$$ be the lengths of perpendiculars from circumcentre of $$\Delta \,ABC$$   on the sides $$BC, AC$$   and $$AB,$$  respectively. If $$ \lambda \left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}}\,$$      then $$\lambda $$ equals

A. 1
B. 2
C. 3
D. 4  
Answer :   4
Solution :
$$\eqalign{ & {\text{We have, }}\,\tan A = \frac{a}{{2{d_1}}}; \cr & {d_1} = R\cos A\,{\text{ etc}}{\text{.}} \cr} $$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{Similarly, }}\,\tan B = \frac{b}{{2{d_2}}} \cr & {\text{and }}\,\tan C = \frac{C}{{2{d_3}}} \cr & {\text{In }}\,\Delta \,ABC,\tan A + \tan B + \tan C \cr & = \tan A \cdot \tan B \cdot \tan C \cr & \Rightarrow \frac{a}{{2{d_1}}} + \frac{b}{{2{d_2}}} + \frac{c}{{2{d_3}}} = \frac{{abc}}{{8{d_1}{d_2}{d_3}}} \cr & \therefore 4\left( {\frac{a}{{{d_1}}} + \frac{b}{{{d_2}}} + \frac{c}{{{d_3}}}} \right) = \frac{{abc}}{{{d_1}{d_2}{d_3}}} \cr & \Rightarrow \lambda = 4 \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section