Let $$\frac{d}{{dx}}F\left( x \right) = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$ If $$\int_1^4 {\frac{{2{e^{\sin \,{x^2}}}}}{x}dx} = F\left( k \right) - F\left( 1 \right)$$ then one of the possible values of $$k$$ is :
A.
4
B.
$$-4$$
C.
16
D.
none of these
Answer :
16
Solution :
$$\eqalign{
& {\text{Put }}{x^2} = z \cr
& {\text{Then }}\int_1^4 {\frac{{2.{e^{\sin \,{x^2}}}}}{x}dx} = \int_1^{16} {\frac{{{e^{\sin \,z}}}}{z}dz} \cr
& = \int_1^{16} {\frac{d}{{dz}}\left\{ {F\left( z \right)} \right\}dz} \cr
& = \left[ {F\left( z \right)} \right]_1^{16} \cr
& = F\left( {16} \right) - F\left( 1 \right) \cr} $$
$$\therefore \,F\left( {16} \right) = F\left( k \right),$$ from the question.
Hence, one of the possible values of $$k=16.$$
Releted MCQ Question on Calculus >> Definite Integration
Releted Question 1
The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$ is-