Question

Let $$\frac{d}{{dx}}F\left( x \right) = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$      If $$\int_1^4 {\frac{{2{e^{\sin \,{x^2}}}}}{x}dx} = F\left( k \right) - F\left( 1 \right)$$       then one of the possible values of $$k$$ is :

A. 4
B. $$-4$$
C. 16  
D. none of these
Answer :   16
Solution :
$$\eqalign{ & {\text{Put }}{x^2} = z \cr & {\text{Then }}\int_1^4 {\frac{{2.{e^{\sin \,{x^2}}}}}{x}dx} = \int_1^{16} {\frac{{{e^{\sin \,z}}}}{z}dz} \cr & = \int_1^{16} {\frac{d}{{dz}}\left\{ {F\left( z \right)} \right\}dz} \cr & = \left[ {F\left( z \right)} \right]_1^{16} \cr & = F\left( {16} \right) - F\left( 1 \right) \cr} $$
$$\therefore \,F\left( {16} \right) = F\left( k \right),$$     from the question.
Hence, one of the possible values of $$k=16.$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section