Solution :
Let the point $$P$$ be $$\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$
The equation of tangent at $$P$$ is

$$\frac{{x\,\cos \,\theta }}{a} + \frac{{y\,\sin \,\theta }}{b} = 1......\left( 1 \right)$$
If $$d$$ be the length of perpendicular from the centre $$C\left( {0,\,0} \right)$$ of the ellipse to the tangent given by $$\left( 1 \right)$$ then
$$\eqalign{
& d = \frac{1}{{\sqrt {\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}} }} \cr
& \Rightarrow \frac{1}{{{d^2}}} = \frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}} \cr
& \Rightarrow \frac{{{b^2}}}{{{d^2}}} = \frac{{{b^2}}}{{{a^2}}}{\cos ^2}\theta + 1 - {\cos ^2}\theta \cr
& \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = \left( {1 - \frac{{{b^2}}}{{{a^2}}}} \right){\cos ^2}\theta \cr
& \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = {e^2}{\cos ^2}\theta ......\left( 2 \right) \cr
& {\text{Now,}}\,\,{\left( {P{F_1} - P{F_2}} \right)^2} \cr
& = {\left( {2ae\,\cos \,\theta } \right)^2} \cr
& = 4{a^2}{e^2}{\cos ^2}\theta \cr
& = 4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right) \cr} $$