Question

Let $$d$$ be the perpendicular distance from the centre of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ be the foci of the ellipse, then $${\left( {P{F_1} - P{F_2}} \right)^2} = ?$$

A. $$4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$  
B. $${a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
C. $$4{b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
D. $${b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
Answer :   $$4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
Solution :
Let the point $$P$$ be $$\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$
The equation of tangent at $$P$$ is
Ellipse mcq solution image
$$\frac{{x\,\cos \,\theta }}{a} + \frac{{y\,\sin \,\theta }}{b} = 1......\left( 1 \right)$$
If $$d$$ be the length of perpendicular from the centre $$C\left( {0,\,0} \right)$$  of the ellipse to the tangent given by $$\left( 1 \right)$$ then
$$\eqalign{ & d = \frac{1}{{\sqrt {\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}} }} \cr & \Rightarrow \frac{1}{{{d^2}}} = \frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}} \cr & \Rightarrow \frac{{{b^2}}}{{{d^2}}} = \frac{{{b^2}}}{{{a^2}}}{\cos ^2}\theta + 1 - {\cos ^2}\theta \cr & \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = \left( {1 - \frac{{{b^2}}}{{{a^2}}}} \right){\cos ^2}\theta \cr & \Rightarrow 1 - \frac{{{b^2}}}{{{d^2}}} = {e^2}{\cos ^2}\theta ......\left( 2 \right) \cr & {\text{Now,}}\,\,{\left( {P{F_1} - P{F_2}} \right)^2} \cr & = {\left( {2ae\,\cos \,\theta } \right)^2} \cr & = 4{a^2}{e^2}{\cos ^2}\theta \cr & = 4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right) \cr} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section