Question

Let $$\rho $$ be the relation on the set $$R$$ of all real numbers defined by setting $$a\rho b$$  iff $$\left| {a - b} \right| \leqslant \frac{1}{2}.$$   Then $$\rho $$ is :

A. reflexive and symmetric but not transitive  
B. symmetric and transitive but not reflexive
C. transitive but neither reflexive nor symmetric
D. none of these
Answer :   reflexive and symmetric but not transitive
Solution :
$$\eqalign{ & \rho \,{\text{is reflexive, since }}\left| {a - a} \right| = 0 < \frac{1}{2}{\text{ for all }}a\, \in \,R \cr & \rho \,{\text{is symmetric, since }} \Rightarrow \left| {b - a} \right| < \frac{1}{2} \cr & \rho \,{\text{is not transitive}}{\text{.}} \cr & {\text{For, if we take three numbers }}\frac{3}{4},\frac{1}{3},\frac{1}{8} \cr & {\text{Then,}}\,\,\left| {\frac{3}{4} - \frac{1}{3}} \right| = \frac{5}{{12}} < \frac{1}{2}{\text{ and }}\left| {\frac{1}{3} - \frac{1}{8}} \right| = \frac{5}{{24}} < \frac{1}{2} \cr & {\text{But, }}\left| {\frac{3}{4} - \frac{1}{8}} \right| = \frac{5}{8} > \frac{1}{2} \cr & {\text{Thus, }}\frac{3}{4}\rho \frac{1}{3}{\text{ and }}\frac{1}{3}\rho \frac{1}{8}{\text{ but }}\frac{3}{4}\left( { \sim \rho } \right)\frac{1}{8} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section