Question

Let $${A_n}$$ be the sum of the first $$n$$ terms of the geometric series $$704 + \frac{{704}}{2} + \frac{{704}}{4} + \frac{{704}}{8} + ....$$       and $${B_n}$$ be the sum of the first $$n$$ terms of the geometric series $$1984 - \frac{{1984}}{2} + \frac{{1984}}{4} + \frac{{1984}}{8} + ....$$       If $${A_n} = {B_n},$$   then the value of $$n$$ is (where $$n \in N$$  ).

A. 4
B. 5  
C. 6
D. 7
Answer :   5
Solution :
$$\eqalign{ & {A_n} = 704 + \frac{{704}}{2} + \frac{{704}}{4} + ....\,{\text{to }}n{\text{ terms}} \cr & = \frac{{704\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}} \cr & = 704 \times 2\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) \cr & {B_n} = 1984 - \frac{{1984}}{2} + \frac{{1984}}{4} + ....\,{\text{to }}n{\text{ terms}} \cr & = \frac{{1984\left( {1 - {{\left( {\frac{{ - 1}}{2}} \right)}^n}} \right)}}{{1 - \left( {\frac{{ - 1}}{2}} \right)}} \cr & = 1984 \times \frac{2}{3}\left( {1 - {{\left( {\frac{{ - 1}}{2}} \right)}^n}} \right) \cr & {\text{Now}},\,{A_n} = {B_n} \cr & \Rightarrow 704 \times 2\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) \cr & = 1984 \times \frac{2}{3} \times \left( {1 - {{\left( {\frac{{ - 1}}{2}} \right)}^n}} \right) \cr & \Rightarrow 33 - 31 = 33{\left( {\frac{1}{2}} \right)^n} - 31{\left( {\frac{{ - 1}}{2}} \right)^n} \cr & \Rightarrow {2^{n + 1}} = 33 - 31{\left( { - 1} \right)^n} \cr & \Rightarrow n = 5 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section