Question
Let $$\alpha {\mkern 1mu} {\text{,}}{\mkern 1mu} \beta $$ be the roots of $${x^2} - x + p = 0\,$$ and $$\gamma ,\delta $$ be the roots of $${x^2} - 4x + q = 0.\,$$ If $$\alpha {\mkern 1mu} ,{\mkern 1mu} \beta {\mkern 1mu} ,{\mkern 1mu} \gamma ,{\mkern 1mu} \delta $$ are in G.P., then the integral values of $$p$$ and $$q$$ respectively, are
A.
$$- 2, - 32$$
B.
$$- 2, 3$$
C.
$$- 6, 3$$
D.
$$- 6, - 32$$
Answer :
$$- 2, - 32$$
Solution :
$$\eqalign{
& \alpha \,,\beta \,{\text{ are the roots of }}{x^2} - x + p = 0 \cr
& \therefore \,\,\,\,\alpha + \beta = 1\,\,\,\,\,\,.....\left( 1 \right) \cr
& \,\,\,\,\,\,\,\alpha \beta = p\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& \gamma \,,\delta \,\,{\text{are the roots of }}{x^2} - 4x + q = 0 \cr
& \therefore \,\,\,\,\,\gamma + \delta = 4\,\,\,\,\,.....\left( 3 \right) \cr
& \,\,\,\,\,\,\,\,\,\gamma \delta = q\,\,\,\,\,\,\,\,.....\left( 4 \right) \cr
& \alpha ,\,\,\beta ,\,\,\gamma ,\,\,\delta \,\,{\text{are in G}}{\text{.P}}{\text{.}} \cr
& \therefore \,\,\,{\text{Let }}\alpha = a;\beta = ar,\gamma = a{r^2},\delta = a{r^3}. \cr
& {\text{Substituting these values in equations }}\left( {\text{1}} \right){\text{,}}\left( {\text{2}} \right){\text{, }}\left( 3 \right){\text{ and}}\,\left( 4 \right),\,{\text{we get }} \cr
& \,\,\,\,a + ar = 1\,\,\,\,\,\,\,\,.....\left( 5 \right) \cr
& \,\,\,\,{a^2}r = p\,\,\,\,\,\,\,\,\,\,\,\,.....\left( 6 \right) \cr
& \,\,\,\,a{r^2} + a{r^3} = 4\,\,\,.....\left( 7 \right) \cr
& \,\,\,\,{a^2}{r^5} = q\,\,\,\,\,\,\,\,\,\,\,.....\left( 8 \right) \cr
& {\text{Dividing (7) by (5) we get}} \cr
& \frac{{a{r^2}\left( {1 + r} \right)}}{{a\left( {1 + r} \right)}} = \frac{4}{1} \cr
& \Rightarrow {r^2} = 4 \cr
& \Rightarrow r = 2, - 2 \cr
& \left( 5 \right)\,\,\,\,\,\,\,\,\, \Rightarrow a = \frac{1}{{1 + r}} = \frac{1}{{1 + 2}}{\text{ or }}\frac{1}{{1 - 2}} = \frac{1}{3}{\text{ or }} - 1 \cr
& {\text{As }}p{\text{ is an integer (given), }}r{\text{ is also an integer}}\left( {{\text{2 or}} - 2} \right) \cr
& \therefore \,\left( 6 \right)\,\,\,\,\, \Rightarrow a \ne \frac{1}{3}\,{\text{ Hence }}a = - 1{\text{ and }}r = - 2. \cr
& \therefore \,\,\,\,\,p = {\left( { - 1} \right)^2} \times \left( { - 2} \right) = - 2 \cr
& q = {\left( { - 1} \right)^2} \times {\left( { - 2} \right)^5} = - 32 \cr} $$