Question

Let $$\alpha \,{\text{and }}\beta $$  be two roots of the equation $${x^2} + 2x + 2 = 0,$$    then $${\alpha ^{15}} + {\beta ^{15}}$$  is equal to:

A. $$- 256$$  
B. $$512$$
C. $$- 512$$
D. $$256$$
Answer :   $$- 256$$
Solution :
Consider the equation
$$\eqalign{ & {x^2} + 2x + 2 = 0 \cr & x = {\left( {\sqrt 2 {e^{i\frac{{3\pi }}{4}}}} \right)^{15}} + {\left( {\sqrt 2 {e^{ - i\frac{{3\pi }}{4}}}} \right)^{15}} \cr & {\text{Let }}\alpha = - 1 + i,\,\,\beta = - 1 - i \cr & {\alpha ^{15}} + {\beta ^{15}} = {\left( { - 1 + i} \right)^{15}} + {\left( { - 1 - i} \right)^{15}} \cr & = {\left( {\sqrt 2 {e^{i\frac{{3\pi }}{4}}}} \right)^{15}} + {\left( {\sqrt 2 {e^{ - i\frac{{3\pi }}{4}}}} \right)^{15}} \cr & = {\left( {\sqrt 2 } \right)^{15}}\left[ {{e^{\frac{{i45\pi }}{4}}} + {e^{\frac{{ - i45\pi }}{4}}}} \right] \cr & = {\left( {\sqrt 2 } \right)^{15}}.2\cos \frac{{45\pi }}{4} \cr & = {\left( {\sqrt 2 } \right)^{15}}.2\cos \frac{{3\pi }}{4} \cr & = \frac{{ - 2}}{{\sqrt 2 }}{\left( {\sqrt 2 } \right)^{15}} \cr & = - 2{\left( {\sqrt 2 } \right)^{14}} \cr & = - 256 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section