Question

Let $$\alpha \,\,{\text{and }}\beta $$   be the roots of equation $${x^2} - 6x - 2 = 0.$$    If $${a_n} = {\alpha ^n} - {\beta ^n},$$   for $$n \geqslant 1,$$  then the value of $$\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$$   is equal to:

A. 3  
B. $$- 3$$
C. 6
D. $$- 6$$
Answer :   3
Solution :
$$\eqalign{ & \alpha ,\beta = \frac{{6 \pm \sqrt {36 + 8} }}{2} = 3 \pm \sqrt {11} \cr & \alpha = 3 + \sqrt {11} ,\beta = 3 - \sqrt {11} \cr & \therefore \,\,{a_n} = {\left( {3 + \sqrt {11} } \right)^n} - {\left( {3 - \sqrt {11} } \right)^n} \cr & \frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}} \cr & = \frac{{{{\left( {3 + \sqrt {11} } \right)}^{10}} - {{\left( {3 - \sqrt {11} } \right)}^{10}} - 2{{\left( {3 + \sqrt {11} } \right)}^8} + 2{{\left( {3 - \sqrt {11} } \right)}^8}}}{{2\left[ {{{\left( {3 + \sqrt {11} } \right)}^9} - {{\left( {3 - \sqrt {11} } \right)}^9}} \right]}} \cr & = \frac{{{{\left( {3 + \sqrt {11} } \right)}^8}\left[ {{{\left( {3 + \sqrt {11} } \right)}^2} - 2} \right] + {{\left( {3 - \sqrt {11} } \right)}^8}\left[ {2 - {{\left( {3 - \sqrt {11} } \right)}^2}} \right]}}{{2\left[ {{{\left( {3 + \sqrt {11} } \right)}^9} - {{\left( {3 - \sqrt {11} } \right)}^9}} \right]}} \cr & = \frac{{{{\left( {3 + \sqrt {11} } \right)}^8}\left( {9 + 11 + 6\sqrt {11} - 2} \right) + {{\left( {3 - \sqrt {11} } \right)}^8}\left( {2 - 9 - 11 + 6\sqrt {11} } \right)}}{{2\left[ {{{\left( {3 + \sqrt {11} } \right)}^9} - {{\left( {3 - \sqrt {11} } \right)}^9}} \right]}} \cr & = \frac{{6{{\left( {3 + \sqrt {11} } \right)}^9} - 6{{\left( {3 - \sqrt {11} } \right)}^9}}}{{2\left[ {{{\left( {3 + \sqrt {11} } \right)}^9} - {{\left( {3 - \sqrt {11} } \right)}^9}} \right]}} = \frac{6}{2} = 3 \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section