Question

Let $$\vec \alpha = 3\hat i + \hat j$$   and $$\vec \beta = 2\hat i - \hat j + 3\hat k.$$
If $$\vec \beta = {{\vec \beta }_1} - {{\vec \beta }_2},$$   where $${{\vec \beta }_1}$$ is parallel to $${\vec \alpha }$$ and $${{\vec \beta }_2}$$ is perpendicular to $${\vec \alpha },$$ then $${{\vec \beta }_1} \times {{\vec \beta }_2}$$   is equal to :

A. $$ - 3\hat i + 9\hat j + 5\hat k$$
B. $$3\hat i - 9\hat j - 5\hat k$$
C. $$\frac{1}{2}\left( { - 3\hat i + 9\hat j + 5\hat k} \right)$$  
D. $$\frac{1}{2}\left( {3\hat i - 9\hat j + 5\hat k} \right)$$
Answer :   $$\frac{1}{2}\left( { - 3\hat i + 9\hat j + 5\hat k} \right)$$
Solution :
$$\vec \beta = {{\vec \beta }_1} - {{\vec \beta }_2}.....(1)$$
Since, $${{\vec \beta }_2}$$ is perpendicular to $${\vec \alpha }.$$
$$\therefore {{\vec \beta }_2}.\vec \alpha = 0$$
Since, $${{\vec \beta }_1}$$ is parallel to $${\vec a}.$$
then $${{\vec \beta }_1} = \lambda \vec \alpha \,\,\left( {{\text{say}}} \right)$$
$$\eqalign{ & \vec a.\vec \beta = \vec a.{{\vec \beta }_1} - \vec \alpha .{{\vec \beta }_2} \cr & \Rightarrow 5 = \lambda {\alpha ^2} \cr & \Rightarrow 5 = 1 \times 10 \cr & \Rightarrow \lambda = \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because \left| {\vec \alpha } \right| = \sqrt {10} } \right) \cr & \therefore {{\vec \beta }_1} = \frac{{\vec \alpha }}{2} \cr} $$
Cross product with $${{\vec \beta }_1}$$ in equation (1)
\[\begin{array}{l} \Rightarrow \vec \beta \times {{\vec \beta }_1} = - {{\vec \beta }_2} \times {{\vec \beta }_1}\\ \Rightarrow \vec \beta \times {{\vec \beta }_1} = {{\vec \beta }_1} \times {{\vec \beta }_2}\\ \Rightarrow {{\vec \beta }_1} \times {{\vec \beta }_2} = \frac{{ - {{\vec \beta }_1} \times \vec \alpha }}{2}\\ \Rightarrow {{\vec \beta }_1} \times {{\vec \beta }_2} = \frac{1}{2}\left| \begin{array}{l} \hat i\,\,\,\,\,j\,\,\,\,\,k\\ 2\,\,\, - 1\,\,\,\,3\\ 3\,\,\,\,\,1\,\,\,\,\,0 \end{array} \right|\\ \Rightarrow {{\vec \beta }_1} \times {{\vec \beta }_2} = \frac{1}{2}\left[ { - 3\hat i - \hat j\left( { - 9} \right) + \hat k\left( 5 \right)} \right] \end{array}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section