Question

Let $$ABCD$$   be a parallelogram such that $$\overrightarrow {AB} = \vec q,\,\overrightarrow {AD} = \vec p$$    and $$\angle BAD$$   bean acute angle. If $${\vec r}$$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$  then $${\vec r}$$ is given by :

A. $$\vec r = 3\vec q - \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
B. $$\vec r = - \vec q + \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$  
C. $$\vec r = \vec q - \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
D. $$\vec r = - 3\vec q - \frac{{3\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
Answer :   $$\vec r = - \vec q + \frac{{\left( {\vec p.\vec q} \right)}}{{\left( {\vec p.\vec p} \right)}}\vec p$$
Solution :
Let $$ABCD$$   be a parallelogram such that $$\overrightarrow {AB} = \vec q,\,\overrightarrow {AD} = \vec p$$     and $$\angle BAD$$   be an acute angle.
We have
3D Geometry and Vectors mcq solution image
$$\eqalign{ & \overrightarrow {AX} = \left( {\frac{{\vec p.\vec q}}{{\left| {\vec p} \right|}}} \right)\left( {\frac{{\vec p}}{{\left| {\vec p} \right|}}} \right) = \frac{{\vec p.\vec q}}{{{{\left| {\vec p} \right|}^2}}}\vec p \cr & {\text{Let }}\vec r = \overrightarrow {BX} = \overrightarrow {BA} + \overrightarrow {AX} = - \vec q + \frac{{\vec p.\vec q}}{{{{\left| {\vec p} \right|}^2}}}\vec p \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section