Question

Let $${A_0}{A_1}{A_2}{A_3}{A_4}{A_5}$$    be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $${A_0}{A_1},{A_0}{A_2}\,{\text{and }}{A_0}{A_4}\,{\text{is}}$$

A. $$\frac{3}{4}$$
B. $${3\sqrt 3 }$$
C. $$3$$  
D. $$\frac{{3\sqrt 3 }}{2}$$
Answer :   $$3$$
Solution :
Let the vertices be $${z_0},{z_1},.....,{z_5}$$   w.r.t centre $$O$$ as origin $$\left| {{z_0}} \right| = 1,$$
$$\eqalign{ & {A_0}{A_1} = \left| {{z_1} - {z_0}} \right| = \left| {{z_0}{e^{i\theta }} - {z_0}} \right| \cr & \therefore {A_0}{A_1} = \left| {{z_0}} \right|\left| {\cos \theta + i\sin \theta - 1} \right| \cr & = 1 \cdot \sqrt {{{\left( {\cos \theta - 1} \right)}^2} + {{\sin }^2}\theta } = \sqrt {2\left( {1 - \cos \theta } \right)} \cr & \therefore {A_0}{A_1} = \sqrt {2.2{{\sin }^2}\frac{\theta }{2}} = 2\sin \frac{\theta }{2} \cr} $$
Where $$\theta = \frac{{2\pi }}{6} = \frac{\pi }{3}.$$   Replacing $$\theta $$ by $$2\theta $$ and $$4\theta ,$$
we get, $${A_0}{A_2} = 2\sin \frac{{2\theta }}{2} = 2\sin \theta \,\,\& \,\,{A_0}{A_4} = 2\sin \frac{{4\theta }}{2} = 2\sin 2\theta $$
$$\eqalign{ & \therefore \left( {{A_0}{A_1}} \right)\left( {{A_0}{A_2}} \right)\left( {{A_0}{A_4}} \right) \cr & = 8\sin \frac{\pi }{6}\sin \frac{\pi }{3}\sin \frac{{2\pi }}{3} \cr & = 8\left( {\frac{1}{2}} \right)\left( {\frac{{\sqrt 3 }}{2}} \right)\left( {\frac{{\sqrt 3 }}{2}} \right) = 3 \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section