Question

Let a vertical tower $$AB$$  have its end $$A$$ on the level ground. Let $$C$$ be the mid - point of $$AB$$  and $$P$$ be a point on the ground such that $$AP = 2AB.$$   If $$\angle BPC = \beta ,$$   then $$\tan\beta $$  is equal to:

A. $$\frac{4}{9}$$
B. $$\frac{6}{7}$$
C. $$\frac{1}{4}$$
D. $$\frac{2}{9}$$  
Answer :   $$\frac{2}{9}$$
Solution :
$$\eqalign{ & {\text{Since }}AP = 2AB \cr & \Rightarrow \,\,\frac{{AB}}{{AP}} = \frac{1}{2}\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{Let }}\angle APC = \alpha \cr & \tan \alpha = \frac{{AC}}{{AP}} \cr & = \frac{1}{2}\frac{{AB}}{{AP}} \cr & = \frac{1}{4} \cr & \left( {\because \,C\,\,{\text{is the mid point }}\therefore \,AC = \frac{1}{2}AB} \right) \cr & \Rightarrow \,\,\tan \alpha = \frac{1}{4} \cr} $$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{As }}\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} \cr & \Rightarrow \,\,\frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} \cr} $$
\[ = \frac{1}{2}\left[ \begin{gathered} \because \,\tan \left( {\alpha + \beta } \right) = \frac{{AB}}{{AP}} \hfill \\ \tan \left( {\alpha + \beta } \right) = \frac{1}{2}\left[ {{\text{From}}\left( 1 \right)} \right] \hfill \\ \end{gathered} \right]\]
$$\eqalign{ & \Rightarrow \,\,\frac{{\frac{1}{4} + \tan \beta }}{{1 - \frac{1}{4}\tan \beta }} = \frac{1}{2} \cr & \therefore \,\,\tan \beta = \frac{2}{9} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section