Question

Let $$\vec a = \hat i + 2\hat j + \hat k,\,\vec b = \hat i - \hat j + \hat k,\,\vec c = \hat i + \hat j - \hat k.$$         A vector in the plane of $$\vec a$$ and $$\vec b$$ whose projection on $$\vec c$$ is $$\frac{1}{{\sqrt 3 }},$$  is :

A. $$4\hat i - \hat j + 4\hat k$$  
B. $$3\hat i + \hat j - 3\hat k$$
C. $$2\hat i + \hat j - 2\hat k$$
D. $$4\hat i + \hat j - 4\hat k$$
Answer :   $$4\hat i - \hat j + 4\hat k$$
Solution :
A vector in the plane of $${\vec a}$$ and $${\vec b}$$ is
$$\vec u = \vec a + \lambda \vec b = \left( {1 + \lambda } \right)\hat i + \left( {2 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k$$
Projection of $${\vec u}$$ on $$\vec c = \frac{1}{{\sqrt 3 }}\,\,\, \Rightarrow \frac{{\vec u.\vec c}}{{\left| {\vec c} \right|}} = \frac{1}{{\sqrt 3 }}$$
$$\eqalign{ & \Rightarrow \vec u.\vec c = 1\,\, \Rightarrow \left| {1 + \lambda + 2 - \lambda - 1 - \lambda } \right| = 1 \cr & \Rightarrow \left| {2 - \lambda } \right| = 1\,\, \Rightarrow \lambda = 1{\text{ or }}3 \cr & \Rightarrow \vec u = 2\hat i + \hat j + 2\hat k{\text{ or 4}}\hat i - \hat j + 4\hat k \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section