Question

Let $$a, b, c$$   $$ \in $$ $$R$$ . If $$f\left( x \right) = a{x^2} + bx + c$$     is such that $$a + b + c = 3{\text{ and }}f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,\,\forall \,x,y \in R,{\text{ then }}\sum\limits_{n = 1}^{10} {f\left( n \right)} {\text{ is equal to:}}$$

A. 255
B. 330  
C. 165
D. 190
Answer :   330
Solution :
$$\eqalign{ & f\left( x \right) = a{x^2} + bx + c \cr & f\left( 1 \right) = a + b + c = 3 \cr & \Rightarrow f\left( 1 \right) = 3 \cr & {\text{Now }}f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{Put }}x = y = 1{\text{ in eqn}}{\text{.}}\left( 1 \right) \cr & f\left( 2 \right) = f\left( 1 \right) + f\left( 1 \right) + 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\, = 2f\left( 1 \right) + 1 \cr & f\left( 2 \right) = 7 \cr & \Rightarrow \,f\left( 3 \right) = 12 \cr & {\text{Now, }}{S_n} = 3 + 7 + 12 + ...... + {t_{n\,\,\,\,}}\,\,\,\,\,\,.....\left( 1 \right) \cr & {S_n} = 3 + 7 + ...... + {t_{n - 1}} + {t_n}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr & {\text{Subtract}}\left( 2 \right){\text{from}}\left( 1 \right) \cr & {t_n} = 3 + 4 + 5 + ......{\text{ upto }}n{\text{ terms}} \cr & {t_n} = \frac{{\left( {{n^2} + 5n} \right)}}{2} \cr & {S_n} = \sum {{t_n}\, = \sum {\frac{{\left( {{n^2} + 5n} \right)}}{2}} } \cr & {S_n} = \frac{1}{2}\left[ {\frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \frac{{5n\left( {n + 1} \right)}}{2}} \right] \cr & \,\,\,\,\,\, = \frac{{n\left( {n + 1} \right)\left( {n + 8} \right)}}{6} \cr & {S_{10}} = \frac{{10 \times 11 \times 18}}{6} = 330 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section