Question

Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}$$      and the angles between $$\overrightarrow a ,\,\overrightarrow c $$  and $$\overrightarrow a ,\,\overrightarrow b $$  be $$\alpha $$ and $$\beta $$ respectively then :

A. $$\alpha = \frac{{3\pi }}{4},\,\beta = \frac{\pi }{4}$$
B. $$\alpha = \frac{\pi }{4},\,\beta = \frac{{7\pi }}{4}$$
C. $$\alpha = \frac{\pi }{4},\,\beta = \frac{{3\pi }}{4}$$  
D. none of these
Answer :   $$\alpha = \frac{\pi }{4},\,\beta = \frac{{3\pi }}{4}$$
Solution :
$$\eqalign{ & \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}\,\,\,\,\, \Rightarrow \,\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \frac{{\overrightarrow b + \overrightarrow c }}{{\sqrt 2 }}\, \cr & \Rightarrow \overrightarrow a .\overrightarrow c = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\overrightarrow a .\overrightarrow b = - \frac{1}{{\sqrt 2 }} \cr & \Rightarrow \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \,\alpha = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \,\beta = - \frac{1}{{\sqrt 2 }} \cr & \therefore \,\,\cos \,\alpha = \frac{1}{{\sqrt 2 }},\,\,\,\,\,\cos \,\beta = - \frac{1}{{\sqrt 2 }} \cr & \therefore \alpha = \frac{\pi }{4},\,\,\,\,\,\beta = \frac{{3\pi }}{4} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section