Question

Let $$a, b, c$$  be the sides of a triangle where $$a \ne b \ne c\,\,{\text{and}}\,\,\lambda \in R.$$     If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$         are real, then

A. $$\lambda < \frac{4}{3}$$  
B. $$\lambda > \frac{5}{3}$$
C. $$\lambda \in \left( {\frac{1}{3},\frac{5}{3}} \right)$$
D. $$\lambda \in \left( {\frac{4}{3},\frac{5}{3}} \right)$$
Answer :   $$\lambda < \frac{4}{3}$$
Solution :
$$\because \,\,a,b,c$$   are sides of a triangle and $$a \ne b \ne c$$
$$\therefore \,\,\left| {a - b} \right| < \left| c \right|$$
$$\eqalign{ & \Rightarrow \,\,{a^2} + {b^2} - 2ab < {c^2} \cr & {\text{Similarly, we get}} \cr & {b^2} + {c^2} - 2bc < {a^2};{c^2} + {a^2} - 2ca < {b^2} \cr & {\text{On adding, we get}} \cr & {a^2} + {b^2} + {c^2} < 2\left( {ab + bc + ca} \right) \cr & \Rightarrow \,\,\frac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} < 2\,\,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$$\because $$ Roots of the given equation are real
$$\eqalign{ & \therefore \,\,{\left( {a + b + c} \right)^2} - 3\lambda \left( {ab + bc + ca} \right) \geqslant 0 \cr & \Rightarrow \,\,\frac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} \geqslant 3\lambda - 2\,\,\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr & {\text{From}}\left( 1 \right){\text{and}}\left( 2 \right),{\text{we get}} \cr & {\text{3}}\lambda - 2 < 2 \cr & \Rightarrow \,\,\lambda < \frac{4}{3}. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section