Let $$a, b, c$$ be in A.P. Consider the following statements :
$$\eqalign{
& 1.\,\,\,\frac{1}{{ab}},\frac{1}{{ca}}{\text{and}}\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& {\text{2}}{\text{.}}\,\,\,\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }}{\text{and}}\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
Which of the statements given above is/are correct ?
A.
1 only
B.
2 only
C.
Both 1 and 2
D.
Neither 1 nor 2
Answer :
Both 1 and 2
Solution :
$$\eqalign{
& {\text{Let, }}\frac{1}{{ab}},\frac{1}{{ca}},\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \frac{1}{{ca}} - \frac{1}{{ab}} = \frac{1}{{bc}} - \frac{1}{{ca}} \cr
& \Rightarrow \frac{1}{a}\left( {\frac{1}{c} - \frac{1}{b}} \right) = \frac{1}{c}\left( {\frac{1}{b} - \frac{1}{a}} \right) \cr
& \Rightarrow \frac{{b - c}}{{abc}} = \frac{{a - b}}{{abc}} \cr
& \Rightarrow b - c = a - b \cr
& \Rightarrow 2b = a + c \cr} $$
⇒ $$a, b, c$$ are in A.P. Which is true
$$\eqalign{
& {\text{Now, }}\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }},\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \therefore \frac{2}{{\sqrt c + \sqrt a }} = \frac{1}{{\sqrt b + \sqrt c }} + \frac{1}{{\sqrt a + \sqrt b }} \cr
& \Rightarrow 2\left( {\sqrt b + \sqrt c } \right)\left( {\sqrt a + \sqrt b } \right) = \left( {\sqrt c + \sqrt a } \right)\left( {\sqrt a + 2\sqrt b + \sqrt c } \right) \cr
& \Rightarrow 2\left( {\sqrt {ab} + b + \sqrt {ac} + \sqrt {bc} } \right) = \sqrt {ac} + 2\sqrt {bc} + c + a + 2\sqrt {ab} + \sqrt {ac} \cr
& \Rightarrow 2\sqrt {ab} + 2b + 2\sqrt {ac} + 2\sqrt {bc} = 2\sqrt {ac} + 2\sqrt {bc} + 2\sqrt {ab} + c + a \cr
& \Rightarrow 2b = a + c \cr} $$
⇒ $$a, b, c$$ are in A.P. Which is true.
Hence, both the statements are correct
Releted MCQ Question on Algebra >> Sequences and Series
Releted Question 1
If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$ terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$ is equal to:
If $$a, b, c$$ are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$ and $$d{x^2} + 2ex + f = 0$$ have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$ are in-