Question

Let $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ be three non-coplanar vectors, and let and $$\overrightarrow p ,\,\overrightarrow q $$  and $$\overrightarrow r $$ be the vectors defined by the relations $$\overrightarrow p = \frac{{\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\overrightarrow q = \frac{{\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$         and $$\overrightarrow r = \frac{{\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}.$$    Then the value of the expression $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right).\overrightarrow r $$          is equal to :

A. 0
B. 1
C. 2
D. 3  
Answer :   3
Solution :
$$\eqalign{ & \overrightarrow a .\overrightarrow p = \frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} = \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} = 1 = \overrightarrow b .\overrightarrow q = \overrightarrow c .\overrightarrow r \cr & \overrightarrow b .\overrightarrow p = \frac{{\overrightarrow b .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} = \frac{0}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} = 0 = \overrightarrow c .\overrightarrow p = \overrightarrow a .\overrightarrow r \cr} $$
Therefore, the given expression is equal to $$1 + 0 + 1 + 0 + 1 + 0 = 3.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section