Question

Let A and B denote the statements
$$\eqalign{ & {\bf{A}}\,:\cos \alpha + \cos \beta + \cos \gamma = 0 \cr & {\bf{B}}\,:\sin \alpha + \sin \beta + \sin \gamma = 0 \cr} $$
If $$\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right) = - \frac{3}{2},$$         then:

A. A is false and B is true
B. both A and B are true  
C. both A and B are false
D. A is true and B is false
Answer :   both A and B are true
Solution :
We have
$$\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right) = - \frac{3}{2}$$
$$\eqalign{ & \Rightarrow \,\,2\left[ {\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right)} \right] + 3 = 0 \cr & \Rightarrow \,\,2\left[ {\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right)} \right] + {\sin ^2}\alpha + {\cos ^2}\alpha + {\sin ^2}\beta + {\cos ^2}\beta + {\sin ^2}\gamma + {\cos ^2}\gamma = 0 \cr & \Rightarrow \,\,\left[ {{{\sin }^2}\alpha + {{\sin }^2}\beta + {{\sin }^2}\gamma + 2\sin \alpha \sin \beta + 2\sin \beta \sin \gamma + 2\sin \gamma \sin \alpha } \right] + \left[ {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma + 2\cos \alpha \cos \beta + 2\cos \beta \cos \gamma + 2\cos \gamma \cos \alpha } \right] = 0 \cr & \Rightarrow \,\,{\left[ {\sin \alpha + \sin \beta + \sin \gamma } \right]^2} + {\left( {\cos \alpha + \cos \beta + \cos \gamma } \right)^2} = 0 \cr & \Rightarrow \,\,\sin \alpha + \sin \beta + \sin \gamma = 0\,\,{\text{and }}\cos \alpha + \cos \beta + \cos \gamma = 0 \cr} $$
∴ A and B both are true.

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section