Question

Let $$\overrightarrow A = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k,\,\overrightarrow B = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k$$         and $$\overrightarrow C = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k$$     be three non-zero vectors such that $$\overrightarrow C $$ is a unit vector perpendicular to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B .$$ If the angle between $$\overrightarrow A $$ and $$\overrightarrow B $$ is $$\frac{\pi }{6},$$  then \[{\left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right|^2}\]   is equal to :

A. $$0$$
B. $$1$$
C. $$\frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)$$  
D. $$\frac{3}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)\left( {c_1^2 + c_2^2 + c_3^2} \right)$$
Answer :   $$\frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right)$$
Solution :
\[\begin{array}{l} {\left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right|^2} = {\left[ {\overrightarrow A \overrightarrow B \overrightarrow C } \right]^2}\\ \Rightarrow \left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right| = {\left( {\left( {\overrightarrow A \times \overrightarrow B } \right).\overrightarrow C } \right)^2}\\ \Rightarrow \left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right| = {\left\{ {\left| {\overrightarrow A } \right|\,\left| {\overrightarrow B } \right|\sin \frac{\pi }{6}\left( {\overrightarrow C } \right).\overrightarrow C } \right\}^2}\\ \Rightarrow \left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right| = {\left| {\overrightarrow A } \right|^2}{\left| {\overrightarrow B } \right|^2}{\left( {\frac{1}{2}} \right)^2}{\left| {\overrightarrow C } \right|^4}\\ \Rightarrow \left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right| = \frac{1}{4}{\left| {\overrightarrow A } \right|^2}{\left| {\overrightarrow B } \right|^2}\\ \Rightarrow \left| \begin{array}{l} {a_1}\,\,\,\,{a_2}\,\,\,\,{a_3}\\ {b_1}\,\,\,\,\,{b_2}\,\,\,\,{b_3}\\ {c_1}\,\,\,\,\,{c_2}\,\,\,\,{c_3} \end{array} \right| = \frac{1}{4}\left( {a_1^2 + a_2^2 + a_3^2} \right)\left( {b_1^2 + b_2^2 + b_3^2} \right) \end{array}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section