Question

Let $$A\left( {\overrightarrow a } \right)$$  and $$B\left( {\overrightarrow b } \right)$$  be points on two skew line $$\overrightarrow r = \overrightarrow a + \overrightarrow \lambda $$   and $$\overrightarrow r = \overrightarrow b + u\overrightarrow q $$   and the shortest distance between the skew line is $$1$$, where $$\overrightarrow p $$ and $$\overrightarrow q $$ are unit vectors forming adjacent sides of a parallelogram enclosing an area of $$\frac{1}{2}$$ units. If an angle between $$AB$$  and the line of shortest distance is $${60^ \circ },$$  then $$AB = ?$$

A. $$\frac{1}{2}$$
B. $$2$$  
C. $$1$$
D. $$\lambda \, \in \,R - \left\{ 0 \right\}$$
Answer :   $$2$$
Solution :
$$\eqalign{ & 1 = \left| {\left( {\overrightarrow b - \overrightarrow a } \right).\frac{{\left( {\overrightarrow p \times \overrightarrow q } \right)}}{{\left| {\overrightarrow p \times \overrightarrow q } \right|}}} \right| \cr & \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right|\cos \,{60^ \circ } = 1 \cr & \Rightarrow AB = 2 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section