Question

Let $$a = 2i + j - 2k$$    and $$b = i + j.$$   If $$c$$ is a vector such that $$a.\,\,c = \left| c \right|,\,\,\left| {c - a} \right| = 2\sqrt 2 $$      and the angle between $$\left( {a \times b} \right)$$  and $$c$$ is $${30^ \circ },$$  then $$\left| {\left( {a \times b} \right) \times c} \right| = ?$$

A. $$\frac{2}{3}$$
B. $$\frac{3}{2}$$  
C. $$2$$
D. $$3$$
Answer :   $$\frac{3}{2}$$
Solution :
$$\eqalign{ & \left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = \left| {\vec a \times \vec b} \right|\left| {\vec c} \right|\,\sin \,{30^ \circ } \cr & = \frac{1}{2}\left| {\vec a \times \vec b} \right|\left| {\vec c} \right|.....(1) \cr & {\text{we have, }}\vec a = 2\hat i + \hat j - 2\hat k{\text{ and }}\vec b = \hat i + \hat j \cr & \Rightarrow \vec a \times \vec b = 2\hat i - 2\hat j + \hat k\,\,\,\,\, \Rightarrow \left| {\vec a \times \vec b} \right| = \sqrt 9 = 3 \cr & {\text{Also given }}\left| {\vec c - \vec a} \right| = 2\sqrt 2 \cr & \Rightarrow {\left| {\vec c - \vec a} \right|^2} = 8 \cr & \Rightarrow \left( {\vec c - \vec a} \right).\left( {\vec c - \vec a} \right) = 8 \cr & \Rightarrow {\left| {\vec c} \right|^2} - \vec c.\vec a - \vec a.\vec c + {\left| {\vec a} \right|^2} = 8 \cr & {\text{As }}\left| {\vec a} \right| = 3{\text{ and }}\vec a.\vec c = \left| {\vec c} \right|,{\text{we get}} \cr & \Rightarrow {\left| {\vec c} \right|^2} - 2\left| {\vec c} \right| + 1 = 0 \cr & \Rightarrow \,{\left( {\left| {\vec c} \right| - 1} \right)^2} = 0 \cr & \Rightarrow \left| {\vec c} \right| = 1 \cr} $$
Substituting values of $$\left| {\vec a \times \vec b} \right|$$  and $$\left| {\vec c} \right|$$ in (1), we get
$$\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section