Question

Let \[A + 2B = \left[ {\begin{array}{*{20}{c}} 1&2&0\\ 6&{ - 3}&3\\ { - 5}&3&1 \end{array}} \right]\]     and \[2A - B = \left[ {\begin{array}{*{20}{c}} 2&{ - 1}&5\\ 2&{ - 1}&6\\ 0&1&2 \end{array}} \right],\]     then $$tr\left( A \right) - tr\left( B \right)$$    is

A. 1
B. 3
C. 2  
D. 0
Answer :   2
Solution :
Here to find the value of $$tr\left( A \right) - tr\left( B \right),$$    we need not to find the matrices $$A$$ and $$B.$$
We can find $$tr\left( A \right) - tr\left( B \right)$$    using the properties of trace of matrix, i.e.,
\[A + 2B = \left[ {\begin{array}{*{20}{c}} 1&2&0\\ 6&{ - 3}&3\\ { - 5}&3&1 \end{array}} \right]\]
$$\eqalign{ & \Rightarrow tr\left( {A + 2B} \right) = - 1\left( 1 \right) \cr & {\text{or, }}tr\left( A \right) + 2tr\left( B \right) = - 1 \cr} $$
\[ \Rightarrow 2A - B = \left[ {\begin{array}{*{20}{c}} 2&{ - 1}&5\\ 2&{ - 1}&6\\ 0&1&2 \end{array}} \right]\]
$$ \Rightarrow tr\left( {2A - B} \right) = 3\,\,\,\,{\text{or, }}2tr\left( A \right) - tr\left( B \right) = 3\left( 2 \right)$$
Solving (1) and (2), we get $$tr\left( A \right) = 1{\text{ and }}tr\left( B \right) = - 1$$
$$ \Rightarrow tr\left( A \right) - tr\left( B \right) = 2$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section