Question

Let $$\overrightarrow a = 2\overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$        and a unit vector $$\overrightarrow c $$ be coplanar. If $$\overrightarrow c $$ is perpendicular to $$\overrightarrow a $$ then $$\overrightarrow c = ?$$  

A. $$\frac{1}{{\sqrt 2 }}\left( { - \overrightarrow j + \overrightarrow k } \right)$$  
B. $$\frac{1}{{\sqrt 3 }}\left( { - \overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
C. $$\frac{1}{{\sqrt 5 }}\left( {\overrightarrow i - 2\overrightarrow j } \right)$$
D. $$\frac{1}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
Answer :   $$\frac{1}{{\sqrt 2 }}\left( { - \overrightarrow j + \overrightarrow k } \right)$$
Solution :
$$\eqalign{ & \overrightarrow c = t\overrightarrow a + s\overrightarrow b .{\text{ Also }}\left| {\overrightarrow c } \right| = 1\left( {{\text{given}}} \right) \cr & {\text{Now, }}\overrightarrow c = t\left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) + s\left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {2t + s} \right)\overrightarrow i + \left( {t + 2s} \right)\overrightarrow j + \left( {t - s} \right)\overrightarrow k \cr & \therefore \,\,\left| {\overrightarrow c } \right| = 1\,\,\,\therefore \,{\left( {2t + s} \right)^2} + {\left( {t + 2s} \right)^2} + {\left( {t - s} \right)^2} = 1.....\left( 1 \right) \cr & {\text{and }}\overrightarrow a .\overrightarrow c = 0\,\, \Rightarrow 2\left( {2t + s} \right) + 1\left( {t + 2s} \right) + 1\left( {t - s} \right) = 0 \cr & {\text{or }}6t + 3s = 0{\text{ or }}2t + s = 0 \cr & \therefore \,{\text{from}}\left( 1 \right),\,{0^2} + {\left( {t - 4t} \right)^2} + {\left( {t + 2t} \right)^2} = 1 \cr & {\text{or }}18{t^2} = 1\,\,\,\,\,\therefore t = \pm \frac{1}{{3\sqrt 2 }} \cr & \therefore \,s = - 2t = \mp \frac{{\sqrt 2 }}{3} \cr & \therefore \,\overrightarrow c = \left( {2t + s} \right)\overrightarrow i + \left( {t + 2s} \right)\overrightarrow j + \left( {t - s} \right)\overrightarrow k \cr & = 0\overrightarrow i - 3t\overrightarrow j + 3t\overrightarrow k \cr & = - 3t\left( {\overrightarrow j - \overrightarrow k } \right) \cr & = - 3.\frac{{ \pm 1}}{{3\sqrt 2 }}\left( {\overrightarrow j - \overrightarrow k } \right) \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section