Question

Let $$\vec a = 2\hat i + \hat j - 2\hat k$$    and $$\vec b = \hat i + \hat j.$$   Let $${\vec c}$$ be a vector such that $$\left| {\vec c - \vec a} \right| = 3,\,\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = 3$$      and the angle between $${\vec c}$$ and $$\vec a \times \vec b$$  be $${30^ \circ }.$$  Then $$\vec a.\vec c$$  is equal to :

A. $$\frac{1}{8}$$
B. $$\frac{{25}}{8}$$
C. $$2$$  
D. $$5$$
Answer :   $$2$$
Solution :
Given :
$$\eqalign{ & \vec a = 2\hat i + \hat j - 2\hat k,\,\vec b = \hat i + \hat j \cr & \Rightarrow \left| {\vec a} \right| = 3 \cr & \therefore \,\vec a \times \vec b = 2\hat i - 2\hat j + \hat k \cr & \left| {\vec a \times \vec b} \right| = \sqrt {{2^2} + {2^2} + {1^2}} = 3 \cr} $$
We have $$\left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = \left| {\vec a \times \vec b} \right|\left| {\vec c} \right|\,\sin \,{30^ \circ }$$
$$\eqalign{ & \Rightarrow \left| {\left( {\vec a \times \vec b} \right) \times \vec c} \right| = 3\left| {\vec c} \right|.\frac{1}{2} \cr & \Rightarrow 3 = 3\left| {\vec c} \right|.\frac{1}{2} \cr & \therefore \left| {\vec c} \right| = 2 \cr} $$
Now $$\left| {\vec c - \vec a} \right| = 3$$
On squaring, we get
$$\eqalign{ & \Rightarrow {c^2} + {a^2} - 2\vec c.\vec a = 9 \cr & \Rightarrow 4 + 9 - 2\vec a.\vec c = 9 \cr & \Rightarrow \vec a.\vec c = 2\,\,\,\,\,\,\,\,\,\,\left[ {\because \vec c.\vec a = \vec a.\vec c} \right] \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section