Question

Let $$A = \left( {1,\,0} \right)$$   and $$B = \left( {2,\,1} \right).$$   The line $$AB$$  turns about $$A$$ through an angle $$\frac{\pi }{6}$$ in the clockwise sense, and the new position of $$B$$ is $$B'.$$ Then $$B'$$ has the coordinates :

A. $$\left( {\frac{{3 + \sqrt 3 }}{2},\,\frac{{\sqrt 3 - 1}}{2}} \right)$$  
B. $$\left( {\frac{{3 - \sqrt 3 }}{2},\,\frac{{\sqrt 3 + 1}}{2}} \right)$$
C. $$\left( {\frac{{1 - \sqrt 3 }}{2},\,\frac{{1 + \sqrt 3 }}{2}} \right)$$
D. none of these
Answer :   $$\left( {\frac{{3 + \sqrt 3 }}{2},\,\frac{{\sqrt 3 - 1}}{2}} \right)$$
Solution :
$$\eqalign{ & {\text{Given, points are }}A = \left( {1,\,0} \right){\text{ and }}B = \left( {2,\,1} \right) \cr & {\text{Slope of }}AB = \frac{{1 - 0}}{{2 - 1}} = 1 \cr & {\text{Then angle of }}AB{\text{ with }}x{\text{ - axis is}} \cr & \angle BAX = {45^ \circ } \cr & {\text{Hence, }}\angle B'AX = {45^ \circ } - {30^ \circ } = {15^ \circ } \cr & {\text{Therefore for }}B'\left( {h,\,k} \right) \cr & h = 1 + \sqrt 2 \,\cos \,{15^ \circ },\,k = \sqrt 2 \,\sin \,{15^ \circ } \cr & {\text{We have, }}\sin \left( {{{15}^ \circ }} \right) = \frac{{\sqrt 6 - \sqrt 2 }}{4} \cr & \Rightarrow \cos \left( {{{15}^ \circ }} \right) = \frac{{\sqrt 6 + \sqrt 2 }}{4} \cr & \Rightarrow h = \frac{{3 + \sqrt 3 }}{2},\,k = \frac{{\sqrt 3 - 1}}{2} \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section