Question

Let $${a_1},{a_2},{a_3},.....$$    be in harmonic progression with $${a_1} = 5$$   and $${a_{20}} = 25$$  . The least positive integer $$n$$ for which $${a_n} < 0$$   is

A. 22
B. 23
C. 24
D. 25  
Answer :   25
Solution :
$$\eqalign{ & \because \,\,{a_1},{a_2},{a_3},.....{\text{ are in H}}{\text{.P}}{\text{.}} \cr & \therefore \,\,\frac{1}{{{a_1}}},\frac{1}{{{a_2}}},\frac{1}{{{a_3}}}.....{\text{ are in A}}{\text{.P}}{\text{.}} \cr & \therefore \,\,\,\,\frac{1}{{{a_1}}} = \frac{1}{5}{\text{ and }}\frac{1}{{{a_{20}}}} = \frac{1}{{25}} \cr & \frac{1}{{{a_1}}} + 19d = \frac{1}{{{a_{20}}}} \cr & \Rightarrow \,\,\frac{1}{5} + 19d = \frac{1}{{25}} \cr & \Rightarrow \,\,d = \frac{{ - 4}}{{475}} \cr & {\text{Now }}\frac{1}{{{a_n}}} = \frac{1}{5} + \left( {n - 1} \right)\left( {\frac{{ - 4}}{{475}}} \right) \cr & {\text{Clearly }}\,{a_n} < 0{\text{ }}\,{\text{if }}\,\frac{1}{{{a_n}}} < 0 \cr & \Rightarrow \,\,\frac{1}{5} - \frac{{4n}}{{475}} + \frac{4}{{475}} < 0 \cr & \Rightarrow \,\, - 4n < - 99{\text{ or }}n > \frac{{99}}{4} = 24\frac{3}{4} \cr & \therefore \,\,n \geqslant 25 \cr & {\text{Hence least value of }}n{\text{ is 25}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section