Question

$${L_1}$$ and $${L_2}$$ are two lines whose vector equations are
$$\eqalign{ & {L_1}:\overrightarrow r = \lambda \left( {\left( {\cos \,\theta + \sqrt 3 } \right)\hat i + \left( {\sqrt 2 \,\sin \,\theta } \right)\hat j + \left( {\cos \,\theta - \sqrt 3 } \right)\hat k} \right) \cr & {L_2}:\overrightarrow r = \mu \left( {a\hat i + b\hat j + c\hat k} \right), \cr} $$
where $$\lambda $$ and $$\mu $$ are scalars and $$\alpha $$ is the acute angle between $${L_1}$$ and $${L_2}.$$ If the angle $$'\alpha '$$ is independent of $$\theta $$ then the value of $$'\alpha '$$ is :

A. $$\frac{\pi }{6}$$  
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{6}$$
Solution :
Both the lines pass through origin. Line $${L_1}$$ is parallel to the vector
$$\overrightarrow {{V_1}} = \left( {\cos \,\theta + \sqrt 3 } \right)\hat i + \left( {\sqrt 2 \,\sin \,\theta } \right)\hat j + \left( {\cos \,\theta - \sqrt 3 } \right)\hat k$$
and $${L_2}$$ is parallel to the vector
$$\eqalign{ & \overrightarrow {{V_2}} = a\hat i + b\hat j + c\hat k \cr & \therefore \,\cos \,\alpha = \frac{{\overrightarrow {{V_1}} .\overrightarrow {{V_2}} }}{{\left| {\overrightarrow {{V_1}} } \right|\left| {\overrightarrow {{V_2}} } \right|}} \cr & = \frac{{a\left( {\cos \,\theta + \sqrt 3 } \right) + \left( {b\sqrt 2 } \right)\sin \,\theta + c\left( {\cos \,\theta - \sqrt 3 } \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} \sqrt {{{\left( {\cos \,\theta + \sqrt 3 } \right)}^2} + 2\,{{\sin }^2}\theta + {{\left( {\cos \,\theta - \sqrt 3 } \right)}^2}} }} \cr & = \frac{{\left( {a + c} \right)\cos \,\theta + \left( {b\sqrt 3 } \right) + \sin \,\theta + \left( {a - c - \sqrt 3 } \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} \sqrt {2 + 6} }} \cr} $$
In order that $$\cos \,\alpha $$   is independent of $$\theta ,$$  we get $$a + c = 0$$   and $$b = 0$$
$$\therefore \,\cos \,\alpha = \frac{{2a\sqrt 3 }}{{a\sqrt 2 \,2\sqrt 2 }} = \frac{{\sqrt 3 }}{2}\, \Rightarrow \alpha = \frac{\pi }{6}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section