Question

$$\int_1^3 {\left| {\left( {2 - x} \right){{\log }_e}x} \right|dx} $$     is equal to :

A. $$\frac{3}{2}{\log _e}3 + \frac{1}{2}$$
B. $${\log _e}\frac{{16}}{{3\sqrt 2 }} - \frac{1}{2}$$  
C. $$ - \frac{3}{2}{\log _e}3 - \frac{1}{2}$$
D. none of these
Answer :   $${\log _e}\frac{{16}}{{3\sqrt 2 }} - \frac{1}{2}$$
Solution :
$$\eqalign{ & \int_1^3 {\left| {2 - x} \right|\,\left| {{{\log }_e}x} \right|dx} = \int_1^2 {\left| {2 - x} \right|\,\left| {{{\log }_e}x} \right|dx} + \int_2^3 {\left| {2 - x} \right|\,\left| {{{\log }_e}x} \right|dx} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \int_1^2 {\left( {2 - x} \right){{\log }_e}x\,dx} + \int_2^3 { - \left( {2 - x} \right){{\log }_e}x\,dx} \cr & {\text{Now, }}\int {\left( {2 - x} \right)} {\log _e}x\,dx = {\log _e}x.\left( {2x - \frac{{{x^2}}}{2}} \right) - \int {\left( {2x - \frac{{{x^2}}}{2}} \right).\frac{1}{x}dx} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {2x - \frac{{{x^2}}}{2}} \right){\log _e}x - \int {\left( {2 - \frac{x}{2}} \right)dx} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {2x - \frac{{{x^2}}}{2}} \right){\log _e}x - \left( {2x - \frac{{{x^2}}}{4}} \right) \cr & \therefore I = \left[ {\left( {2x - \frac{{{x^2}}}{2}} \right){{\log }_e}x - \left( {2x - \frac{{{x^2}}}{4}} \right)} \right]_1^2 + \left[ { - \left( {2x - \frac{{{x^2}}}{2}} \right){{\log }_e}x + \left( {2x - \frac{{{x^2}}}{4}} \right)} \right]_2^3 \cr & = \left( {4 - 2} \right){\log _e}2 - \left( {4 - 1} \right) + \left( {2 - \frac{1}{4}} \right) + \left\{ { - \left( {6 - \frac{9}{2}} \right){{\log }_e}3 + \left( {6 - \frac{9}{4}} \right) + \left( {4 - 2} \right){{\log }_e}2 - \left( {4 - 1} \right)} \right\} \cr & = 2{\log _e}2 - 3 + \frac{7}{4} - \frac{3}{2}{\log _e}3 + \frac{{15}}{4} + 2{\log _e}2 - 3 \cr & = 4{\log _e}2 - \frac{3}{2}{\log _e}3 - \frac{1}{2} \cr & = \log \frac{{16}}{{3\sqrt 3 }} - \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section