Question

$$\int_0^{100\pi } {\sqrt {1 + \cos \,2x} } \,dx$$     is equal to :

A. 0
B. $$100\sqrt 2 $$
C. $$200\sqrt 2 $$  
D. 100
Answer :   $$200\sqrt 2 $$
Solution :
$$I = \int_0^{100\pi } {\sqrt 2 } \left| {\cos \,x} \right|dx.$$     But $$\left| {\cos \,x} \right|$$   is a periodic function of period $$\pi .$$
$$\eqalign{ & \therefore I = 100\int_0^\pi {\sqrt 2 \left| {\cos \,x} \right|dx} \cr & = 100\sqrt 2 \left\{ {\int_0^{\frac{\pi }{2}} {\left| {\cos \,x} \right|dx + } \int_{\frac{\pi }{2}}^\pi {\left| {\cos \,x} \right|dx} } \right\} \cr & = 100\sqrt 2 \left\{ {\int_0^{\frac{\pi }{2}} {\cos \,x\,dx + } \int_{\frac{\pi }{2}}^\pi { - \cos \,x\,dx} } \right\} \cr & = 100\sqrt 2 \left\{ {\left[ {\sin \,x} \right]_0^{\frac{\pi }{2}} + \left[ { - \sin \,x} \right]_{\frac{\pi }{2}}^x} \right\} \cr & = 100\sqrt 2 \left\{ {1 - 0 - \left( {0 - 1} \right)} \right\} \cr & = 200\sqrt 2 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section